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Review of QSPR Modeling of Mobilities of
Peptides in Capillary Zone Electrophoresis

K. P. Liu, B. B. Xia, and X. Y. Zhang

Department of Chemistry, Lanzhou University, Lanzhou, Gansu,
P. R. China

Abstract: Quantitative-structure property relationships, as related to peptide elec-
trophoretic mobility, are presented in this review. The methods of discussion ran-
ged from linear to non-linear method. It is the intent that the review will provide
the present state of knowledge and current trends in this area for a new investi-
gator in this field.
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INTRODUCTION

Peptides, which are composed of amino acids linked through the peptide
bonds between each other, belong to the most important biologically
active substances in the living organisms. We can find many kinds of pep-
tides in the natural world. They play a significant role in control and
regulation of many vitally important living processes, acting as hor-
mones, neurotransmitters, immunomodulators, coenzymes, enzyme sub-
strates, and inhibitors, receptor, ligands, drugs, toxins, and antibiotics. In
the era of proteomics, the comprehensive analysis of proteome currently
represents the main road for a new drug discovery, since both the struc-
tures and functions of many proteins are identified via their peptide frag-
ments.[1] According to the pool of these fragments, a peptide map which
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serves as fingerprint for protein identification can be accomplished. From
the peptide map, one can obtain the whole peptide set of a cell or a
peptidome and then understand the living cell function.[2] So, this pepti-
dic approach is becoming one of the main directions in proteome
research. Now, as we know, because of their nutritional and biological
properties, studies of peptides have become a hot spot in pharmaceutical
and cosmetic industries all over the world.[3] Thus, it can be seen that sep-
aration and analysis of peptides become more and more important and
requires a powerful analytical technique to separate the peptides and to
identify them.

Among the numerous separation techniques, capillary zone electro-
phoresis (CZE) is the most widely used method for peptide separation
because of its simplicity, versatility, high-resolution power, high sensi-
tivity, and a low analysis time.[4] As long as a molecule is charged, it
can be separated by CZE. This makes the applications for CZE very
diverse, being used for peptide, ion, enantiomer, pharmaceuticals, pro-
teins, polymers, amines and food constituents’ analysis.[5] Due to these
peculiar advantages of CZE, CZE is also efficient to obtain some infor-
mation about the identity, the purity, and some structural changes of
peptides. The basic mechanism in electrophoresis is the differences in
the analytes’ mobilities; so, the electrophoretic mobility, which can be
converted to migration time, is the most important parameter governing
the separation of solutes in capillary electrophoresis. However, during the
method development in CZE to develop an optimized separation, the
analysts generally have to employ a large number of experiments, which
is often costly and time-consuming, to analyze and identify the peptides
from real samples. So, there is a necessity to develop a computational
method for calculate the electrophoresis mobility in a certain practical
conditions to shorten the long time normally needed for CZE peptide
identification and, at the same time, to facilitate the improvement of
the quality for CZE peptides separations.

Alternatively, quantitative structure-property relationships (QSPR)
provided a promising method for the estimation of compounds’ electro-
phoretic behavior based on the descriptors derived solely from the mol-
ecular structure to fit experimental data. The advantage of this
approach over other methods lies in the fact that once a reliable model
was built, it required only the knowledge of chemical structure and was
not dependent on the experiment data. The QSPR approach had become
a very useful tool in the prediction of many physicochemical properties.
This approach was based on the assumption that the variation of the
behavior of compounds, as expressed by any measured physicochemical
properties, could be correlated with changes in molecular features of the
compounds, termed descriptors.[6] Noteworthily, the success of a QSPR
will depend on the quality of the data set and on the suitability of the
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descriptor(s) selected. This method could predict the properties of new
compounds that had not been synthesized or found. It can also identify
important structural features of the molecules that are relevant to varia-
tions in molecular properties, and thus gain some insight into the struc-
tural factors affecting the molecular properties. Furthermore, the
application of QSPR, maybe, can reduce the number of chemicals
released into the environment and greatly lessen the impact of these haz-
ardous chemicals on the ecosystem. However, the main problems encoun-
tered in this kind of research are the description of the molecular
structure using appropriate molecular descriptors and selection of suit-
able modeling methods. QSPR studies, as germane to peptides’ electro-
phoretic mobility, will be discussed in this review. This review is
written with the purpose of providing the present state of knowledge
and current trends for peptides’ electrophoretic mobilities in QSPR
methodologies.

MAJOR STAGES IN QSPR/QSAR MODEL OF MOBILITIES OF

PEPTIDE IN CZE

The main steps in QSPR=QSAR modeling process include: data collec-
tion, structure input, structure optimization, molecular descriptors calcu-
lation, descriptors selection, modeling, and model validation.[7,8] This
process can be illustrated as in Fig. 1.[9–11]

In QSPR=QSAR studies, the data’s reliability is the key to obtaining
a precise model. In most cases, the number of the compounds should be
more than ten. To have the computer identify the compound, the struc-
ture of a compound must be converted to a special code which is a type of
data that the computer can deal with. At present, there is much software
to draw the compound structures, such as Chemdraw,[12] and ISIS
DRAW,[13] and others. Then, the structure optimization is enforced using
a molecular modeling software package such as HyperChem,[14]

Gaussian,[15] Sybyl,[16] and MOPAC.[17] They employ the optimization
methods consistent with molecular mechanics force field method,

Figure 1. Main steps in QSPR studies.
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semi-empirical quantum-chemical method, and ab initio method, and
others. The aim of the optimization is to search the optimal conformation
of the compound whose energy is lowest in all conformations. To obtain
a QSPR=QSAR model, compounds are often represented by molecular
descriptors. The optimal structures of compounds are then exported to
CODESSA[18] or DRAGON[19] to calculate the molecular descriptors.

Once molecular descriptors are generated, the variable selection
method must be implemented to reduce the pool of the descriptors
because, after the calculation of descriptors, there will be several hun-
dreds of descriptors and so many descriptors can not directly be used
to construct the model. Furthermore, according to the QSPR=QSAR
theory, the number of the compounds must be five or more greater than
the number of the descriptors. At present, the most important used vari-
able selection methods include: stepwise regression,[20] genetic algorithm
(GA),[21] and the heuristic method (HM).[22] Among these methods, the
HM is widely used, owing to its high speed and no software restrictions
on the size of the data set. Then, using the selected descriptors and the
properties or activities of the compounds, one can build the mathematic
linear or non-linear models, finally validating the model by various meth-
ods. Generally, the following methods of validation are applied to the
models:

1. Leave-One-Out (LOO) – Standard Leave-One-Out cross-validation is
performed on the data.

2. Leave-Many-Out (LMO) – Leave-Many-Out validation is performed
on the data set by randomly splitting into a number of disjoint sub-
sets. For each subset, the standard Leave-Many-Out cross-validation
procedure is performed.

3. Test Set Validation – An external test set is used for validation of the
models.

METHODS

Various linear and nonlinear chemometrics or chemoinformatics meth-
ods can be used to model the relationships between the structural factors
and properties=activities.

Linear Methods

Currently, there are many linear methods used in QSPR studies, such as
multiple linear regression (MLR),[23] linear discriminant analysis (LDA),
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principle component regression (PCR), and partial least squares
(PLS).[24] Herein, only a few methods are discussed.

Multiple Linear Regression (MLR)

Multiple Linear Regression (MLR) is a commonly used statistical
method in traditional 2D-QSPR. In MLR analysis, the descriptors in
the regression equation must be independent variables. To reduce the
number of the descriptors and minimize the information overlap in the
descriptors, the concept of non-redundant descriptors (NRD)[25] is used.
The linear correlation coefficients value between two descriptors should
be less than a pre-determined threshold (e.g., 0.8 or 0.9). Once descriptors
are generated, a forward stepwise regression method is used to develop
the linear model of the property of interest, which is shown as follows:

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn ð1Þ

where, Y is the property, that is, the dependent variable, X1,. . .. . .,Xn rep-
resent the specific descriptors, while b1,. . .. . .,bn represent the coefficients
of those descriptors, and b0 the intercept of this equation.

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is used in statistics to find the linear
combination of features which best separate two or more classes of
objects or events. LDA classifies the dependent by dividing an n-dimen-
sional descriptor space into two regions that are separated by a hyper-
plane which is defined by a linear discriminant function;[26] for more
than two groups, a set of discriminant functions are generated. The
regions formed by the hyperplane correspond to the classes to which indi-
vidual compounds are predicted to belong.

Principle Component Regression (PCR)

Principle Component Regression (PCR) is a useful dimensional reduction
method for original data sets, and containing principle component analy-
sis and regression. Firstly, a statistical technique of changing the many
variables in a data matrix so that the new components are correlated with
the original components but not with each other, that is, so that they are
now independent of each other. It is a technique used to change a set of
original variables into a number of basic dimensions. The principle
component analysis (PCA) is used to extract the abstract factors, and
then construct the mathematic model through a normal regression
method. For the concept of principle component, it can be considered
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that it is a new variable which is the linear combination of the original
variable xij. The main step of the PCR consists of: 1) the normalization
of the data set; 2) the computation of the eigenvalue vector from covari-
ance matrix; 3) selection of principle component and multiple linear
regression analysis.

However, PCR only considers the independent variable but not the
dependent variable, which may include more useful information. Fortu-
nately, PLS can overcome this drawback of the PCR approach. PLS con-
siders not only the independent variable, but also the dependent variable
and simultaneously describes the independent variable and the dependent
variable better through compromising the factors in each feature space.
The main advantages of PLS are: 1) no rigorous limit for the correlation
between variables; 2) meaningful result can be obtained when the number
of variables is larger than the number of samples; 3) the information of
the independent and dependent variables are simultaneously considered
and can obtain a more meaningful result; 4) chance correlation can be
reduced owing to use the cross-validation to select the optimal number
of the principle components in the model.

Non-Linear Methods

At present, there are many non-linear methods; here, we will only intro-
duce the two primary methods which are used most frequently. One is
artificial neural network (ANN)[27] in which a back propagation neural
network (BPNN)[28] and a radial basis function neural network
(RBFNN)[29] are the most useful methods. Another is the support vector
machine (SVM).[30]

Back Propagation Neural Network (BPNN)

The Back Propagation Neural Network (BPNN) is represented schema-
tically in Fig. 2. The BPNN model is composed of a large number of sim-
ple processing elements (PE) or neuron nodes, organized into a sequence
of layers. The first layer is the input layer with one node for each variable
or feature of the data. The last layer is the output layer consisting of one
node for each variable to be investigated. In between these two layers are
a series of one or more hidden layer(s) consisting of a number of nodes,
which are responsible for learning. Nodes in any layer are fully or ran-
domly connected to nodes of a succeeding layer. Each connection is
represented by a number called a weight (w). BPNN are most often used
to analyze non-linear multivariable data. In these networks, signals are
propagated from the input layer through the hidden layer(s) to the output
layer. A node thus receives signals via connections from other nodes
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(or the outside world in the case of the input layer). The net input for a
node j is given by:

netj ¼
X

i

wjioi ð2Þ

where, i represents the nodes in the previous layer, wji is the weight asso-
ciated with the connection from node i to node j, and oi is the output of
node i. The output of a node is determined by the transfer function and
net input of the node. A popular transfer function is the sigmoid:

oj ¼ f ðnetjÞ ¼
1

1þ exp½�ðnetj þ hj�
ð3Þ

where, hj is a bias term or threshold value of node j responsible for
accommodating non-zero offsets in the data. The adequate functioning
of neural networks depends strongly on the way the signals are propa-
gated through the networks. The weights play an important role in
this propagation and a proper setting of these weight factors is essen-
tial. Generally, such a setting is not known beforehand and the
weights are initially given small, random values. The process of adapt-
ing the weights to an optimum set of values is called training and is
usually done by means of supervised learning. A representative train-
ing set with examples is presented iteratively to the neural network
and the difference between the desired solution and the one obtained
is used to adapt the weights in small steps, according to a learning
algorithm. There are a number of learning algorithms used to train
a neural network. A frequently used one is the back propagation
(BP) learning rule.[31]

Figure 2. The typical architecture of the ANN.
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Radial Basis Function Neural Network (RBFNN)

The typical RBFNN architecture is similar to Fig. 2. It also consists of
three layers. The first layer is made up of input nodes that transmit
unweighted inputs to each node in the hidden layer. Each hidden node
contains a radial basis function as the transfer function. The outputs of
these nodes are weighted and summed to produce the final output. In
contrast to the sigmoid function, the radial basis function is classified
as a local activation function. The most often used is the Guassian
function:

Zi;jðxj; ai; biÞ ¼ expð�kai � xjk2=b2
i Þ ð4Þ

where, xj ¼ {x1, x2, . . .. . ., xM}j is the jth input vector of dimension M pre-
sented to the net, Zi, j(xj, ai, bi) is the activation of the ith node in the hid-
den layer in response to the jth input vector xj. Mþ 1 parameters are
associated with each node, viz. aj ¼ { a1, a2,. . .. . ., aM}i, as well as bj, a
distance scaling parameter which determines the distance in the input
space over which the node will have a significant influence. The para-
meters ai and bj function in much the same way as the mean and standard
deviation in a normal distribution. The closer is the input vector to the
pattern of a hidden unit (i.e., the smaller the distance between these vec-
tors), the stronger is the activity of the unit. The hidden layer can thus be
considered to be a density function for the input space and can be used to
derive a measure of the probability that a new input vector is part of the
same distribution as the training vectors. After selection of the centers
and radius, the connections between the radial basis units and the output
node are weighted. The output of the net is, consequently, given by:

Frk ¼
X

WikZi þ bi ð5Þ

where, bi is the bias; i represents the ith node in the hidden layer; wik is the
weight associated with the connection from node i to node k; Zi is the
output of the ith hidden layer node.

Support Vector Machine (SVM)

The Support Vector Machine (SVM), developed by Vapnik[32] as a novel
type of machine learning method, is gaining popularity due to many
attractive features and promising empirical performance. Compared with
traditional neural networks, the SVM possesses prominent advantages: 1)
strong theoretical background provides SVM with high generalization
capability and can avoid local minima; 2) SVM always has a solution,
which can be quickly obtained by a standard algorithm (quadratic pro-
gramming); 3) SVM need not determine network topology in advance,
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which can be automatically obtained when the training process ends; 4)
SVM builds a result based on a sparse subset of training samples, which
reduces the workload. Originally, SVMs are developed for pattern recog-
nition problems, and now, with the introduction of an insensitive loss
function, SVMs have been extended to solve nonlinear regression esti-
mation and time-series prediction with excellent performance.[33] The
basic principle of support vector regression is described below.

A support vector machine is first trained on a sample with objects
having known target values. After training, the machine is used to predict
or estimate target values for objects where these values are unknown. A
kernel-induced feature space with function K(x, xi) is used for the map-
ping of objects onto target values. Thus, a non-linear feature mapping
will allow the treatment of non-linear problems in a linear space. The pre-
diction or approximation function used by a basic SVM is

f ðxÞ ¼
Xl

i¼1

aiKðx; xiÞ þ b ð6Þ

where, ai is some real value, xi is a feature vector corresponding to a
training object. The components of vector a and the constant b represent
the hypothesis and are optimized during training. K (x, xi) is a kernel
function, which value is equal to the inner product of two vectors x
and xi in the feature space U (x) and U (xi). That is, K (x, xi) ¼ U (x)�U
(xi). The elegance of using kernel function lies in the fact that one can deal
with feature spaces of arbitrary dimensionality without having to com-
pute the map U (x) explicitly and it may be useful to think of the kernel,
K (x, xi) as comparing patterns, or as evaluating the proximity of objects
in their feature space. Thus, a test point is evaluated by comparing it to
all training points. Training points with nonzero weight ai are called the
support vectors.

For a given dataset, only the kernel function and the regularity para-
meter C must be selected to specify one SVM. Any function that satisfies
Mercer’s condition can be used as the kernel function. In support of vec-
tor regression, the Gaussian kernel Kðu; vÞ ¼ expð�ju� vj2=d2Þ is most
commonly used.

RECENT APPLICATIONS

The linear methods are commonly used methods in the QSPR study for
peptide electrophoretic mobility. Most of these models are based on the
Offord model, which has shown that the electrophoretic mobility is pro-
portional to the charge Q and inversely proportional to the molecular
mass M.[34–36] Cifuentes et al.[37] considered ten peptides as classical linear
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polymers with n amino acid residues and arrived at an equation that cor-
related mobility with a function in the form of ln [(0.297qþ 1)=M0.411],
and obtained an R of 0.9993. Rickard et al.[38] studied 33 diverse peptides
from enzymatic digests which have a function with q=M2=3 and obtained
an R of 0.948. On the other hand, Janini et al.[39] have obtained the elec-
trophoretic mobility of 58 peptides ranging in size from 2 to 39 amino
acids and charge from 0.65 to 7.82. They also investigated the correlation
between mobility and q=M2=3 which gave an R of 0.96; the obtained
regression equation can be shown as:

lef ¼ 2:44þ 581:85� q=M2=3 ð7Þ

Then, they concluded that, although the Offord model gave the best over-
all mobility, it fails when applied to hydrophobic and highly charged pep-
tides. In 2004, Veronika et al.[40]studied the correlation between mobility
and q=M2=3 of 20 synthetic insect oostatic peptides (IOPs) and their deri-
vatives and fragments. They established several models which gave a
range of R from 0.888 to 0.936. The result indicated that the peptides
which have three or more amino acid residues gave an unsatisfactory
result. And then, in 2007, they studied 12 synthetic gonadotropin-releas-
ing hormones (GnRHs) and their analogs and fragments again.[41] They
also used the q=M2=3 as the descriptor to construct the model which gave
and a range of R from 0.995 to 0.999 and obtained a satisfactory experi-
mental result. From the above literature, we can see that the main
deficiency of the Offord model is that it takes into account only two
physicochemical properties of peptides, the charge (Q) and the relative
molecular mass (M) and the data set cannot be larger, which may result
in a bad regression result.

To improve the predicted accuracy and to deal with a large data set,
many other regression methods are used, in a stepwise manner, such as
MLR, ANN, and SVM. The application of these methods impact the
QSPR studies of peptides’ electrophoretic mobility to a great extent.
Jalali-Heravi et al.[42] considered 125 peptides ranging in size between 2
and 14 amino acids. Their aim was to explore the usefulness of empirical
models and multivariate analysis techniques in predicting electrophoretic
mobilities of small peptides in capillary zone electrophoresis (CZE). They
used the charge-to-size ratio (QM), using the corrected steric substituent
constant (Es, c) and molecular refractivity (MR) as the descriptors to
construct the MLR and BPANN models. Two models gave squared cor-
relation coefficients (R2) of 0.895 and 0.930, respectively. Such a BPANN
model can be designed as 3-4-1 net to indicate the number of the units in
the input, the hidden, and the output layer, respectively. By comparing
two models, it can be found that the BPANN model is better than the
MLR model. In this work, the 125 peptides are all small peptides, so they
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then studied 102 large peptides in which the largest peptide had 42
amino acids to validate the stability of the BPANN.[43] They also used
the same three descriptors as the input and constructed a MLR and a
BPANN which had a 3-3-1 net structure. The obtained squared corre-
lation coefficient (R2) was 0.930 and 0.970, respectively. The result
could reflect the relationship between structure of peptides and electro-
phoretic mobilities more accuracy. Then, they used the obtained
BPANN model to predict the other 24 high-charged and hydrophobic
peptides and obtained higher accuracy than the former literature. The
squared correlation coefficient (R2) predicted was up to 0.990. This
result indicated that the BPANN model was more stable and accurate
than the MLR model. By comparing two BPANN in these two works,
it can be found that the latter BPANN model can include more types
of peptides, has larger applicability, and has more powerful predictive
ability.

Ma et al.[44] studied 183 peptides. Their aim was to predict electro-
phoretic mobilities of peptides in capillary zone electrophoresis using
the HM and a new nonlinear method of RBFNN. The whole data set
was divided into two subsets: data set 1, which consisted of 125 peptides
ranging in size between 2 and 14 amino acids, and data set 2, which con-
sisted of 58 peptides ranging in size between 2 and 39 amino acids. The
HM method was a selection method of variables and was usually used
to obtain preliminary screening of the library of descriptors in order to
select a subset of descriptors that may be of interest and importance
for the study under consideration. Through the HM, they selected four
descriptors which consisted of q=M2=3, the Wiener index (W), the relative
number of O atoms (RNO), and the relative number of N atoms (RNN)
for data set 1 and two descriptors which consisted of q=M2=3 and the
Wiener index (W) for data set 2. For two data sets, they used both
MLR an RBFNN to construct the linear and non-linear model by divid-
ing the data set into training set and test set. The MLR equation for two
data sets shown as follows:

lef (data set 1)¼10:1þ984 � q=M2=3�50600 �W�45:8

� RNOþ52:7 � RNN ð8Þ

lef (data set 2Þ¼2:32þ592� q=M2=3�70900000�W ð9Þ

The result indicated that two RBFNN models which gave a squared
correlation coefficients (R2) 0.9740 and 0.9773, respectively, were all bet-
ter than two MLR models which gave squared correlation coefficients
(R2) 0.9414 and 0.9671, respectively. So, the RBFNN method is a useful
and successful method to predict the electrophoretic mobilities of
peptides for large data set.
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SVM is a new algorithm developed from the machine learning com-
munity. Due to its remarkable generalization performance, the SVM has
attracted attention and gained extensive application. In 2005, for the first
time, Liu et al.[45] used SVM to predict the electrophoretic mobilities of
139 polypeptides using the nine descriptors calculated from the molecular
structure alone. The whole data set was divided into training set and test
set to construct a validate model. The optimized parameters of SVM were
C ¼ 100, e ¼ 0.04, and c ¼ 0.002, respectively. The obtained SVM model
gave squared correlation coefficients (R2) of 0.925, which was better than
the MLR model which gave squared correlation coefficients (R2) of
0.904. From the t-test value, one can find the three descriptors: average
information content (order 1), number of benzene rings, and relative
number of H atoms have the largest influence on the electrophoretic
mobilities, and then obtained some insight to the electrophoretic beha-
vior of the peptides.

Recently, Yu et al.[46] made a further study for 102 large peptides
based on the studies of Jalali-Heravi et al.[43] They used four methods,
which consisted of MLR, BPANN, RBFNN, and SVM, to establish their
model. The four models gave squared correlation coefficients (R2) of
0.913, 0.970, 0.980, and 0.980, respectively, which were better than the
result of Jalali-Heravi et al.[43] The results showed that these machine
learning techniques, especially RBF-ANN and SVM, were effective and
efficient for the development of the accurate and reliable QSPR models,
which was helpful for peptide separations.

CONCLUSION

The diverse studies discussed herein clearly show the importance of
QSPR studies as related to peptides. With the improvement of computa-
tional chemistry and molecular modeling methods, the theoretical
descriptor can comprehensively describe the feature structures of mole-
cules. The use of a new regression algorithm, such as RBFNN and
SVM, can effectively establish the relationship between molecular struc-
ture feature and property. These models can provide some theoretical
guide for the fast experimental condition optimization.
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